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Let p> 1, and dll a positive finite Borel measure on the unit circle
r:= {z E C : Izi = 1}. Define the monic polynomial ¢n.p(z) = zn + ... E &" (the set of
polynomials of degree at most n) satisfying

f l¢njzWdll= inf flzn+PIPdll.
r PE~Il-1 r

Under certain conditions on dll, the asymptotics of ¢n.p(z) for z outside, on, or
inside r are obtained (cf. Theorems 2.2 and 2.4). Zero distributions of tPn,p are also
discussed (cf. Theorems 3.1 and 3.2). © 1991 Academic Press, Inc.

1. INTRODUCTION

Let dJ.l be a finite positive Borel measure on T:= {ZEC: Izi = I}. Let &I;,
be the set of algebraic polynomials of degree at most n. For p > 0, define
tPn,p(z)=zn+ ... E&I;, satisfying

IltPn,pll Lp(dp.) = P1~~-1 Ilzn + PII Lp(dp.) =: en,p,

where (and from now on) II gil Lp(dp.) := ((1/2n) Sr Ig(zW dJ.l)Ilp. We will
consider the asymptotic behavior of tPn,p(z) (outside or on T) and related
problems. The motivation of this paper is a series of recent results obtained
by Lubinsky and Saff concerning the asymptotics of monic polynomials
Tn,p( W, x) of minimal Lp norm associated with weight Won [ -1, 1] or
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R (cf. [7-12]). Under suitable conditions on dp" the nth root asymptotics
of cPn,p can be obtained as a special case from the results in the well-known
paper by Fekete and Walsh [3].

As it is well-known in the theory of asymptotics of orthogonal polyno­
mials (e.g., see [16]), we often first derive the asymptotic results for the
orthogonal polynomials on the unit circle r and then transfer the results
to the orthogonal polynomials on [ -1, 1]. We wonder if this procedure
can be adopted for the study of the asymptotic problems for Tn, p( W, x) on
[ -1, 1]. In order to do so, we must solve the following two problems:

(i) establish the results for the unit circle case;

(ii) find the relation between cPn,p and Tn,p and transfer the results
to Tn,p.

We only consider the problem (i) here. The second problem is still open.
Set

p,(8):=f dp"
{z:z=eit,O::E;t~e}

then p,'(8) exists a.e. on [0, 2n]. Define the Szego function of dJ1 by

{
I f2" eie + z )

D(dJ1, z) := exp - log J1'(8) -ie- de (,
4n 0 e -z )

Izi < 1

(when log J1' is not integrable, we define D(dJ1, z) == 0). It can be seen that
D(dJ1, 0) ¥ 0 iff log J1' ELI'

When log J1' E L 1 , we say dJ1 satisfies the Szego condition, and in this case
we have the following:

(i) D(dJ1,') E H 2 in the unit disk;

(ii) D(dJ1,z)¥Oforlzl<I;

(iii) D(dJ1,O»O;

(iv) limr~ 1~ D(dJ1, reie ) =: D(dJ1, eie ) exists for almost every
8E [0, 2n] and ID(dJ1, eieW = J1'(8) a.e. on [0,2n] (cf. [16, p.276J).

Define the geometric mean G(dJ1) of dJ1 by (cf. [16, p. 275])

G(dJ1) := {D(dJ1, 0)}2 = exp {2I
n f" log J1'(8) d8}

for dJ1 satisfying the Szego condition; G(dJ1) = 0 otherwise.
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2. ASYMPTOTICS FOR rPn,p(Z)

We know the following result due to Szego, Kolmogorov, and Krein
(cf. [6, Chap. IIIJ or [4, p. 270J).

THEOREM 2.1. For every p > 0, we have

lim Bn,p = G(djl)l/p.
n--+ 00

(2.1 )

It is easy to see that {Bn,p} :~o is non-increasing, and so Theorem 2.1
tells us what the limit is. But it does not tell us the rate of the convergence.
We will state and prove some results about the rate of convergence
later (cr. Theorem 2.4). By modifying the methods of Szego (cr. [16,
Chap. XIIJ), we can obtain the following theorem.

THEOREM 2.2. Suppose djl satisfies the Szego condition. Then for every
p> 1 we have

rPn,p(Z) ~ G(djl)l/pzn[i5(djl, Z-l)J -2/p

locally uniformly for Izi > 1, where

- -1 (1)D(djl, Z ):= D djl,; .

(n -4 co) (2.2)

Remark 1. Theorem 2.2 is a special case of Theorem 7.1 as stated in
Geronimus' paper [5]. Geronimus considered (among other things) the
asymptotics for the extremal polynomials of minimum Lp-norm taken over
a rectifiable Jordan curve in the complex plane. We present the following
more informative proof, which yields a useful inequality (see the remark
after the proof of Theorem 2.2). We will need this inequality to characterize
the measures satisfying analytic condition (cf. Theorem 3.1 and its proof).

Remark 2. For p = 2, Theorem 2.2 asserts the well-known asymptotic
result for orthogonal polynomials (cf. [16, p.297J).

Denote

n;. ().= rPn,p(z)'Vn,p Z • ,
Bn,p
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(2.4)

Proof of Theorem 2.2. Following Szego's idea (cf. [16, p.302J),
consider

which is analytic and has expansion

[G(d,u)]I/Pjcn,p + dn,IZ + ...

for Izi < 1. First note that

= 2~ (' 1[D(d,u, eie)]2IP<P~p(eiew de

- 2Re {2~r' [D(d,u, eie)]2IP<P~,p(eie) de} +1
1 f2n [G(dll)] lip

=_ I[D(d,u,eie)]2IP<P~p(eieWde+1-2 r' ,(2.3)
2n 0 c~P

where in the last equality we used the Cauchy formula. (Note that
D(d,u, z?lp E HP, so we can use the Cauchy formula for HP (cf. [2, Sect. 3.3.
Theorem 6]).) Next, for p?; 2, by Holder's inequality,

1 f2n 1 f2n
2n 0 I[D(d,u,eie)]2IP<P~p(eieWde=2n 0 1[,u'(e)]lIP<Pn,p(eieWde

(
1 2n )2IP ( 1 2n )1-2IP

~ 2n L ,u'(e) I<Pn,p(eieW de 2n fa de

(
1 2n )21P

~ 2n fa l<Pn,/eieW d,u(e) = 1.

So by (2.1), (2.3), and (2.4)

[G(d,u)] lip
In~2-2 .

cn,p

Hence, by using Theorem 2.1 and the Cauchy formula, we have

(n ~ ex)) (2.5)

locally uniformly for Izi < 1, or equivalently by using Theorem 2.1,

(n ~ ex))

locally uniformly for Izi > 1. So we have shown that (2.2) holds for p?; 2.
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We now consider the remaining case when p E (1, 2). Since

the Hausdorff-Young inequality for the Taylor coefficients of a function in
HP space yields (cf. [2, Sect. 6.1])

~ 1,

where q satisfies lip + llq = 1, and so

Hence, for Izi < 1,

I[D(d/l, z) ]z/p cP~p(z) - 11

~ 1[G(d/l)]l/PIsn,p -11 + Idn,lZ + dn,zzz + .. ·1

~ I[G(d/l)] l/Plsn,p - 11 + (Idn,ll q+ Idn,zl q+ ... )l/qC~II:IPyiP

~ I[G(d/l)] l/Pls - 1[ + [I - ([G(dll)] l/Pls )qll/q Izin,p ,.,. n,p (1-lzIP)l/P'

So again we get (2.5). This completes the proof of Theorem 2.2. I

Remark. In the above proof, we can see the following inequality holds
when p> 1 and d/l satisfies the Szego condition:

max IcP:,p(z) - [D(d/l, z)] -z/PI ~ Kp(sn,p - [G(d/l)] l/p)l/p)W.
Izi S;p

Here p E (0, 1), lip + llq = 1, ij = max(2, q), and Kp is a constant only
depending on p.

Now we turn our attention to the asymptotics of rPn,p(z), or equivalently
cPn,p(z), for z on and inside the unit circle. From now on, we will only
consider the case when d/l is absolutely continuous, i.e., d/l(e) = Il' de.
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DEFINITION. (i) Let s > °be an integer and C( E (0, 1). We say that df.l
satisfies an (s, C( )-Lipschitz condition if df.l is absolutely continuous and

(BE [0, 211:])

has sth derivative and the sth derivative satisfies a Lipschitz condition of
order ct.

(ii) Let r> 1; we say that df.l satisfies an analytic condition for r if
D(dJ1., Z)-2Ip has analytic continuation to Izi < r.

Let us first state the following Lemma 2.3 which is a special case of the
known results for weighted Faber polynomials (cf. [15 J). Define the
polynomials Fn as the principal (polynomial) part of

at 00 for n > 0, or equivalently, define Fn as follows: for Izl < R,

(2.6 )

where R> 1.

LEMMA 2.3 [15, p. 9]. (i) Let s be a non-negative integer and ct E (0, 1).
If dJ1. satisfies an (s, C( )-Lipschitz condition, then

uniformly for Izl >1.

(ii) Let r> 1; if dJ1. satisfies an analytic condition for r, then for every
r1 E (1, r),

Fn(z) = zn[i5(dJ1., Z-I)J -21p + 0 C\)
uniformly for Izi >r 1

1
•

Now we can state

THEOREM 2.4. (i) Let s>°be an integer, ct E (0, 1). /f dJ1. satisfies an
(s, C()-Lipschitz condition, then

(2.7)
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and if, in addition,

{
~1

s >(q-1-o:)

then we have
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for p~2

for 1<p<2 (l/p+1/q=1),

where

(2.8)

{
C()~S~I)I/2 for p~2,

IPn(z)l~ ( Inn )I/q
C n",+s+l-q for 1<p<2 (1/p+1/q=1),

uniformly for Izi = 1.
(ii) Let r> 1; if dfl satisfies an analytic condition for r, then,jor every

rl E (1, r),

and for some r2E (1, r),

tPn,p(z) = zT15(dfl, Z-I)J -2/p + 0 (:~}

locally uniformly for Izi > r- I.

Proof We first show (2.7) and (2.9). Let

en,p:= II [G(dfl)]I/P {Fn(z)-zn[.15(dfl, z-I)J-2/P}IIL
p

(dJl)'

By the definition of en,p,

en, p ~ II [G(dfl)] I/p FnII Lp(dJl)

~ [G(dfl)] I/p Il zn[.15(dfl, Z-I)] -2/P II Lp(dJl) + O(en,p)

= [G(dfl)JI/p + O(en,p)'

But on the other hand,

(2.9)

(2.10)
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(2.11 )

Now, by using Lemma 2.3, we can easily get the estimates for en,p and
establish (2.7) and (2.9), respectively.

Next we show (2.8) and (2.10), Write

(2.12 )

Then by comparing the coefficients of zn on both sides in (2.12), we get

_1_ = An [G(d{l)] -lip,

8n,p

so by (2,11),

A - 1- O(en• p )

n- [G(d{l)]1/P +O(en,p)

= 1+ O(en,p).

Note that by the definition of Fk and (2.12), we have

[.l5(d{l, Z-1 )]2/pcPn,p(z) = Ao+ A1Z+ A2Z2 + ,.. + yl z- 1+ ....

Now let us first assume p:p 2, then

(2.13 )

Together with (2.13), this yields

IAoI2 + ... +IAn _ 112 =O(en,p)·

For pE(l, 2), again we use the Hausdorff-Young inequality for

Since

(2.14)
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so for q satisfying lip + 11q = 1, we have

Hence, with (2.13), it follows that

IAol q + ... +IAn_ 1I
Q =O(en,p)'

Now by (2.14) and (2.15), it is easy to show that, for p> 1,

1 () ) JeJeIl\oFo z + ... + An-1Fn-l(Z 1= O(n Pen,~),

(2.15)

(2.16)

uniformly for Izi = 1, where q= max(2, q), lip + 1/ij = 1 and lip + 11q = 1.
Let en,p = nl/Pe~:~, then by (2.12) and (2.16)

epn,p(z) - AnFn(z) = O(en,p),

uniformly for Izi = 1.
By Lemma 2.3, (2.13) and (2.16) we have

epn,p(z) = zn[D(d,u, Z-I)] -21p + O(en,p), (2.17)

uniformly for Izi = 1.
Finaly, if d,u satisfies the Lipschitz condition for (s, IX), then it is easy to

estimate en,p and so to get (2.8) from (2.17). If d,u satisfies analytic condi­
tion, then by Lemma 2.3(ii), (2.17) holds uniformly for Izi ~ 1"-1, for every
1"E(l, r), and so (2.10) follows from (2.17) easily. I

3. ZERO DISTRIBUTIONS

For orthogonal polynomials on the unit circle, Nevai and Totik [14]
and Mhaskar and Saff [13] obtained some results about the zero distribu­
tions of these polynomials. In their discussion, the recurrence relation
played a very important role. In this section, we will prove some results
similar to those in [14, 13]. Since there are no recurrence relations
available for rPn,p(z) when p=l2, we have to use a different method than
that in the above cited works.

THEOREM 3.1. Let p> 1; assume d,u satisfies the Szego condition and
[D(d,u,z)]-2Ip is not analytic on 3":={zEC:lzl~l}. Then v(rPn,p)
converges in the weak-star topology to the uniform distribution on Izi = 1 for
a subsequence n E A s; JV.
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Here v(¢Jn,p) is the discrete unit measure defined on the Borel set in C
having mass lin at each zero of ¢In,p.

Recall that cap(A) = 1 ("cap" means the logarithmic capacity) and the
equilibrium measure of A, IlLf, is the uniform distribution on r, i.e.,
IlLf = dfJI2n on r

Proof of Theorem 3.1. First, since all the zeros of ¢In,p lie in Iz[ < 1, so

(3.1 )

for every A (closed) c L1. Since ¢In,p(O) is (plus or minus) the product of the
zeros of ¢In,p, we have l¢Jn,p(O)1 ~ 1, and so lim SUPn~ 00 l¢Jn,p(O)!l/n ~ 1. We
claim that

lim sup l¢Jn,p(O)11/n = 1.

Let us assume there is R E (1, 00) such that

lim sup l¢Jn,p(O)11/n = 11R.

By the definition of cn,p and the fact that z = ei8 = liz, we have

Note that

so we can have

therefore

(3.2)
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Hence

so it follows that
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lim sup (8 1 - 8 )l/n:& 1/Rn-,p n,p -....::::: ,
n~ 00

(3.3)

With the inequality in the remark after the proof of Theorem 2.2, (3.3)
implies that

lim sup (max 1<t>:,p(Z) - <t>~+ 1,p(z)1 )l/n ~ 1/Rlfii,
n ~ 00 Izl';;; p

for p E (0,1). Using Bernstein's inequality (cf. [17, p. 77]), we can show
that <t>:,p(z) converges locally uniformly for Izi < Rlfii, and consequently
[D(d.u, z)] -2/p has analytic continuation to Izi < Rlfii, which contradicts
the assumption that [D(d.u, z)] -2/p is not analytic on .J. This proves our
claim (3.2).

Now, by the Bernstein inequality, for every p E (0, 1),

so

lim sup max 1<t>:'p(z)ll/n~~,
n~ 00 Izl';;; 1 P

because by Theorem 2.2

lim <t>~,p(z) = [D(d.u, z)] -2/p
n~ 00

locally uniformly for Izi < 1. Hence, by the arbitrariness of p E (0, 1), and
together with (2.1) and (3.2), it follows that, for some A ~ JV,

( I
<t>* (z) l)l/nlim max n, p ~ 1 = cap(.J)

nn-;;f Izl';;; 1 rPn,p(0)/8n,p

Using Theorem 2.1 in [1] for the monic polynomials

<t>:,p(z)

¢n, p(0)/8n,p'

(3.4)
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from (3.1) and (3.4) we get

281

or equivalently,

n -+ 00,

n -+ 00,

nEA,

nEA. I

Next, we consider the case when the zeros of rPn,p(z) stay away from the
unit circle as in [14]. Let

denote the zeros of rPn,p(z) ordered in such a way that

Iz~;~1 ~ z~p~ l,nl ... ~ Iz~;,;1 < 1.

THEOREM 3.2. Let ji satisfy the Szego condition, and p> 1. Then the
following assertions are equivalent:

(a) lim dUPn~oo Iz~P~(dji)1 < 1;

(b) [D( dji, z)] - 21p is analytic in Izl < r for some r> 1;

(c) limsuPn~oo l~n,p(oWln<1;

(d) SUPn max 1z1 ",p 1~:'p(z)1 < CIJ for some p> 1.

Proof (a)=> (b): If D- 1(dji,z) is not analytic in Izl<r for any r>1,
then from Theorem 3.1, we have

n -+ 00, nEA for some A c JV,

which contradicts (a).

(b) => (a): Assume [D(dji, z)] -21p is analytic in Izi < r for some r> 1.
From Theorem 2.4(ii), we have

~n,p(z) ~ [G(dji)] lip zTD(dji, Z-I)] -21p

which holds locally uniformly for Izl >r2
1 >r- 1

, so

lim sup Iz~;~(dji)1 ~ r2
1 < 1.

(a)=> (c): Note that
n

A. (0) = TI Iz(pJI ~ Iz(pJ 1n
o/n,p r,n 1,n'

i~ 1

so
lim sup l~n,p(O)llln ~ lim sup Iz~;~(dji)1 < 1.
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(c) => (b): The proof is contained in the proof of (3.2).

(d) => (c): Since ¢n,p(O) is the leading coefficient of ¢~p(z), it is easy to
see (by maximum principle) that

So

lim sup l¢n,p(O)ll/n :,,) < 1.
n~oo p

(b) => (d): Let [D(dji, z)] -21p be analytic in Izi < r for some r> 1, from
Theorem 2.4(ii), we have, for some r2 E (1, r),

¢n,p(z) = [G(dji)]llpzTD(dji, z)] -21p + 0 C~)

locally uniformly for Izi > r- l
• So

¢~p(z) -+ [G(dji)] lipD-2Ip(dji, z)

locally uniformly for Izi < r2 , hence SUPn maxlzi ~p 1¢:,p(z)1 is finite for some
pE(1,r2 )· I
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